Orange with Spectroscopy Add-on Workshop

We have just concluded our enhanced Introduction to Data Science workshop, which included several workflows for spectroscopy analysis. Spectroscopy add-on is intended for the analysis of spectral data and it is just as fun as our other add-ons (if not more!).

We will prove it with a simple classification workflow. First, install Spectroscopy add-on from Options – Add-ons menu in Orange. Restart Orange for the add-on to appear. Great, you are ready for some spectral analysis!

Use Datasets widget and load Collagen spectroscopy data. This data contains cells measured with FTIR and annotated with the major chemical compound at the imaged part of a cell. A quick glance in a Data Table will give us an idea how the data looks like. Seems like a very standard spectral data set.

Collagen data set from Datasets widget.

 

Now we want to determine, whether we can classify cells by type based on their spectral profiles. First, connect Datasets to Test & Score. We will use 10-fold cross-validation to score the performance of our model. Next, we will add Logistic Regression to model the data. One final thing. Spectral data often needs some preprocessing. Let us perform a simple preprocessing step by applying Cut (keep) filter and retaining only the wave numbers between 1500 and 1800. When we connect it to Test & Score, we need to keep in mind to connect the Preprocessor output of Preprocess Spectra.

Preprocessor that keeps a part of the spectra cut between 1500 and 1800. No data is shown here, since we are using only the preprocessing procedure as the input for Test & Score.

 

Let us see how well our model performs. Not bad. A 0.99 AUC score. Seems like it is almost perfect. But is it really so?

10-fold cross-validation on spectral data. Our AUC and CA scores are quite impressive.

 

Confusion Matrix gives us a detailed picture. Our model fails almost exclusively on DNA cell type. Interesting.

Confusion Matrix shows DNA is most often misclassified. By selecting the misclassified instances in the matrix, we can inspect why Logistic Regression couldn’t model these spectra

 

We will select the misclassified DNA cells and feed them to Spectra to inspect what went wrong. Instead of coloring by type, we will color by prediction from Logistic Regression. Can you find out why these spectra were classified incorrectly?

Misclassified DNA spectra colored by the prediction made by Logistic Regression.

 

This is one of the simplest examples with spectral data. It is basically the same procedure as with standard data – data is fed as data, learner (LR) as learner and preprocessor as preprocessor directly to Test & Score to avoid overfitting. Play around with Spectroscopy add-on and let us know what you think! 🙂

Single cell analytics workshop at HHMI | Janelia

HHMI | Janelia is one of the prettiest researcher campuses I have ever visited. Located in Ashburn, VA, about 20 minutes from Washington Dulles airport, it is conveniently located yet, in a way, secluded from the buzz of the capital. We adored the guest house with a view of the lake, tasty Janelia-style breakfast (hash-browns with two eggs and sausage, plus a bagel with cream cheese) in the on-campus pub, beautifully-designed interiors to foster collaborations and interactions, and late-evening discussions in the in-house pub.

All these thanks to the invitation of Andrew Lemire, a manager of a shared high-throughput genomics resource, and Dr. Vilas Menon, a mathematician specializing in quantitative genomics. With Andy and Vilas, we have been collaborating in the past few months on trying to devise a simple and intuitive tool for analysis of single-cell gene expression data. Single cell high-throughput technology is one of the latest approaches that allow us to see what is happening within a single cell, and it does that by simultaneously scanning through potentially thousands of cells. That generates loads of data, and apparently, we have been trying to fit Orange for single-cell data analysis task.

Namely, in the past half a year, we have been perfecting an add-on for Orange with components for single-cell analysis. This endeavor became so vital that we have even designed a new installation of Orange, called scOrange. With everything still in prototype stage, we had enough courage to present the tool at Janelia, first through a seminar, and the next day within a five-hour lecture that I gave together with Martin Strazar, a PhD student and bioinformatics expert from my lab. Many labs are embarking on single cell technology at Janelia, and by the crowd that gathered at both events, it looks like that everyone was there.

Orange, or rather, scOrange, worked as expected, and hands-on workshop was smooth, despite testing the software on some rather large data sets. Our Orange add-on for single-cell analytics is still in early stage of development, but already has some advanced features like biomarker discovery and tools for characterization of cell clusters that may help in revealing hidden relations between genes and phenotypes. Thanks to Andy and Vilas, Janelia proved an excellent proving ground for scOrange, and we are looking forward to our next hands-on single-cell analytics workshop in Houston.

Related: Hands-On Data Mining Course in Houston